
How Can We Build More Reliable EDA Software?
 David E. Wallace

Scott Aron Bloom
Blue Pearl Software

Santa Clara, CA
+1 (408) 961-0121

{dave,scott}@bluepearlsoftware.com

Abstract
Many EDA development groups rely on full tool testing as
the only means of determining program correctness.
Meanwhile, other software development communities have
made use of extensive unit tests as a method of assuring
high-quality components. We believe that the value of such
testing is derived from principles familiar to the EDA
community from hardware test generation: the need for
both controllability and observability of a unit under test to
verify correct behavior.

We believe that unit testing has value both for the
development of new code and for the understanding and
adoption of existing code, though it may require substantial
refactoring* to make older code testable.

We explore both the value and costs of unit testing for EDA
software, as well as noting some alternatives to stand-alone
unit testing that may provide some degree of observability
and controllability when full unit testing is impractical. We
describe tools and resources we have used in putting
together a unit test infrastructure at Blue Pearl Software.

1. INTRODUCTION
The field of Electronic Design Automation has developed a
great understanding of how to build and test massively
complex hardware designs to assure a high degree of
reliability. Yet, like the proverbial shoemaker’s children
going barefoot, we EDA developers have often failed to
apply this understanding to the design and development of
our own software. All too often, we content ourselves with
full system testing of our tools on a combination of sample
designs with known results and customer designs with
presumed good results. While this is often sufficient to
detect gross misbehavior, such as crashes, it does little to
ensure that the underlying components are robust,
performing optimally, or are adaptable to new
requirements. This is the software equivalent of shipping
any microprocessor that can execute a few sample
instruction sequences correctly and boot the operating
system without causing a hardware panic. Few of us would

* Refactoring is modifying code to improve its structure

without changing its behavior. [1]

argue that such a testing regime would be sufficient to
assure quality hardware performance in the field, given the
complexity of modern hardware designs. Neither is the
software equivalent sufficient to assure robust performance
of the tools we provide.

A related question is: how can we understand and adapt
existing EDA software once the original developers have
moved on? Much EDA software is based on legacy code
that was developed elsewhere, or is being maintained by
persons other than the original developers. The EDA
landscape is full of companies that are acquired,
development teams that have moved on, and university
software that is adapted to use in a commercial
environment. How well do we understand the strengths
and limitations of inherited code? Even if it is extensively
field-tested (and thus likely free of gross errors), will it
work properly when faced with new conditions and new
designs? Can we determine how to extend and modify such
code while keeping the core algorithms correct, or must we
treat it as a black box that can be called and assumed to
yield correct results, but never touched?

While there are few if any reliable surveys of development
methods across EDA companies, the two of us have a
collective 51 years of experience with EDA development at
13 different companies. We are confident that the problems
we discuss are widespread throughout the EDA industry,
not the isolated pathologies of one or two individual
companies.

These ideas are not a panacea. There is no quick or easy fix
that will guarantee an absence of bugs. We view this as the
start of a multi-year effort to transform the culture and the
software of an EDA company in order to get more reliable
and maintainable software, and a more predictable
development cycle.

2. Background: Controllability and
Observability
What lessons can we draw from the hardware test
community? Two of the most significant advances that
gave rise to modern ATPG were scan testing[2,3] and the
D-algorithm for combinational test pattern generation[4].
These two advances supported each other: the D-algorithm

allowed the automatic generation of test patterns that would
expose faults in a combinational network, while scan testing
decoupled the sequential behavior of a system from its
combinational behavior, allowing these patterns to be
applied to logic gates throughout a chip and the results
observed.

Two key concepts used here are controllability and
observability. In order to detect a presumed fault on a unit
under test (modeled as a stuck-at value on a logic
connection), we need to be able to control the inputs so as
to activate the faulty behavior (controllability), and we need
to also to propagate the effects of the fault to a point where
we can observe the difference between the good system
behavior and the faulty system behavior (observability).

Scan testing allows us to decompose complex hardware
systems into smaller units that can be individually tested. It
allows us to move controllability and observability points
from the system I/Os to the state elements of the design,
allowing more faults to be tested, and simplifying both the
generation of tests and the interpretation of the results.

These same principles apply to software as well as
hardware. If a software test is to expose faulty behavior in
a unit of code, we need to be able to control the inputs of
the unit so as to activate the faulty behavior, and we need to
be able to observe the consequences of that fault in the
outputs. Just as with hardware, testing using only the full
system inputs and outputs is usually not sufficient to cover
all the possible faults of subsystems, and certainly makes
certain tests harder to write, even if we can theoretically
express that test as a functional test. For thorough test
coverage, we need to be able to access internal observation
and control points in the software – what Michael Feathers
refers to as “seams” [5, p. 31] in the code, which serve an
analogous function to scan registers in hardware testing.

These seams will be used to allow testing of individual
functions, methods, and classes in test harnesses.

3. The Case For Unit Testing
What is a unit test? Various sources [5 p. 12, 6 pp. 4-7, 7,
8, 9, 10 p. 499, 11 p. 8] agree that a unit test is a test of an
individual unit of software, generally a method, function or
procedure, but possibly an entire module or class interface.
It often involves a separate test harness, involving drivers
and stubs, to test a single unit or group of units in relative
isolation.

In his critique of Extreme Programming, Robert Glass
called unit testing possibly “the most agreed-upon software
best practice of all time.”[12] However, this kind of unit
testing has not been routinely used in EDA in our
experience. Neither of us has ever worked in an EDA team
where such stand-alone unit tests were developed and
shared by any other team member. If any such testing was
done, it was kept private by individual developers and

discarded once their code had been integrated into the rest
of the tool. There is, however an alternate definition that
has been used by two of the teams we have worked with,
where unit test is used to refer to a small system test case
that tests a single feature or scenario of the software tool.
In this paper, we use “unit test” to refer to the first usage;
the latter may be referred to as a small functional test.

3.1 Bug Example
Consider the following line of C code:

Does it work? Is it reliable? Does it accomplish what the
comment suggests it should do?

This calculation appeared in nearly a dozen different places
in a commercial EDA tool one of us once worked on. It
was attempting to calculate what internal clock cycle would
correspond to the next user clock edge, for a user clock that
occurred every m internal cycles. It had never been the
subject of a user bug report, and the tool passed every
regression test without complaint.

Yet a bit of hand simulation shows that this calculation is
incorrect. For t=7, m=3, the code rounds t up to 8, not 9.
For t=8, m=3, it rounds to 10. For t=17, m=4, it rounds to
18 rather than 20.

The primary reason this bug had remained undetected for so
long was that all but one of the regression tests, and most of
the user experience to date, had been operating on blocks
with a single primary user clock, where m=1 or 2. This
buggy calculation works whenever t is an integer multiple
of m/2, which is always the case for these values of m. But
the company was about to support more accurate models
for multiple clocks, which would require larger values of m.

This brings up one aspect of EDA development: we
frequently reuse code under new conditions that will stress
it in ways not previously experienced. Just because code
was used without apparent errors in a previous deployment
does not mean that it will continue to be reliable when the
requirements change.

To test a single line like that in the middle of a several
hundred line routine is challenging. Not only do we have to
set up the conditions that will trigger the faulty behavior,
we need to trace what conditions on other variables and
data structures will result in a change in the observable
behavior on the outputs of the big routine. But suppose
instead that we had refactored this particular calculation
into a separate, one-line function (correcting the faulty
calculation in the process):

/* Round t up to next multiple of m */

t = t + t%m;

int RoundUpToMultiple(int num, int mod) {

 return num%mod? num+mod–num%mod: num; }

Now we have observability and controllability points
directly before and after the suspect code, and we can call it
directly from a test harness:

By testing so close to the code, we can validate the
functionality directly. This does not imply that every
calculation should be its own function, but note that in this
case, doing so allows the different places performing this
calculation to reuse a single tested implementation instead
of copying their own. In general, coding for testability will
involve writing more modular and shorter routines and
methods than code written without such considerations.

3.2 Seams in the Code
Feathers [5] defines a seam as “a place where you can alter
behavior in your program without editing in that place.”
Calling a function from a test harness rather than production
code as above might seem to qualify. His usage, though, is
mostly focused on creating seams that allow us to modify
either the arguments passed to a function/method or
routines called by the function/method in order to break
dependencies and allow the code to be tested in relative
isolation.

He defines three types of seams that can be used to get code
under test: preprocessor seams, link seams, and object
seams. Preprocessor seams make use of the preprocessor to
change the behavior, such as using a #define to distinguish
between testing mode and system mode. Link seams
change behavior by linking different object libraries with
the code under test – for example, linking with stubs or
mock objects for testing rather than the real thing (for the
distinction between the two, see [13]). Object seams use
the inheritance hierarchy of an object-oriented language
like C++ or Java to substitute test objects with a common
interface in place of real objects in a test harness.

One example of creating an object seam to break build
dependencies occurred in a early unit test we wrote at Blue
Pearl. We needed an instance of a Net object from our
internal database, which required instantiating a Module.
(Faking out the Net object – or the Module – was
considered impractical, because of the amount of Net
behavior the class under test required.) Linking the Module
code required accessing a method called
getPrimitivePinName from a global instance of a big
DesignAttributes class, and trying to link that class would
have required linking in a lot of additional code. So
instead, since this method was the only behavior that

Module needed from DesignAttributes, we created an
abstract class AbstractPinRenamer, that just supports a
getPrimitivePinName method with the same interface as the
DesignAttributes one. Then we had both DesignAttributes
and a new test class inherit from AbstractPinRenamer, and
changed the Module code to interact with an
AbstractPinRenamer rather than a DesignAttributes. Now
the test code could interact with the smaller test class, while
the production code still used a DesignAttributes. This is
an example of the AbstractInterface pattern from
Feathers[5].

3.3 Reducing the Development/Test Cycle
One of the key reasons to adopt unit testing is to speed up
the development/test cycle to give near-instantaneous
feedback on code that we develop. The quicker we can get
testing feedback, the easier it is to understand and fix our
mistakes, and the less likely it is that our mistakes will
inconvenience our fellow developers by getting checked in
to a shared repository trunk.

This cycle time has important qualitative effects on how we
use test feedback. A test suite that involves lots of long-
running user test cases that takes a day or so to run through
will probably not be run before developers check in code.
Even if they do, the odds are that someone else will make a
change that must be merged before checkin, so that the
code being tested will not be exactly the same as the code
that is checked in. Moreover, debugging such examples
when they fail also takes a long time, so when the trunk is
broken it may stay broken for a few days.

If we can reduce the run time to several minutes on a single
machine (either by running a moderate number of quick-
running small functional tests, or very few larger tests), we
can get a test suite that can be run before checkins and at
the conclusion of major blocks of work. This is a big
improvement over the overnight test suite, and decreases
the chances of checking in bad code. Most EDA
organizations have or develop such a suite. But several
minutes is still a significant barrier to routine use of tests
during development. It requires a significant interruption of
work to switch from developing code to running the tests,
which discourages developers from running the tests except
at natural breaks in their work flow. Also note that any test
suite that relies on running a full EDA tool will have a
certain amount of startup time overhead for each test case,
such as getting licenses and reading startup files, which
limits the number of test cases that can be included if the
suite must run in a few minutes.

Finally, if we can reduce the run time of a test suite to a few
seconds, rather than minutes, we get tests that can be
routinely run as part of normal development activity. This
is one goal of unit testing. If it only takes us a few seconds
to verify that the interface behavior of a class we are
modifying hasn’t changed (unintentionally), we can run

EXPECT_EQUAL(4, RoundUpToMultiple(4, 2));

EXPECT_EQUAL(6, RoundUpToMultiple(5, 2));

EXPECT_EQUAL(6, RoundUpToMultiple(4, 3));

EXPECT_EQUAL(6, RoundUpToMultiple(5, 3));

EXPECT_EQUAL(3, RoundUpToMultiple(3, 3));

these tests repeatedly as we modify the implementation. (In
such a development loop, we would typically run just the
unit tests associated with the files or libraries we are
modifying – we would run a larger suite before checkin.)
This can facilitate development techniques such as Test-
Driven Development (TDD) [14]. We want individual unit
tests to run extremely quickly – milliseconds or even
microseconds – so that we can run hundreds or thousands of
them in just a few seconds.

3.4 Documenting behavior
One of the key values of unit tests is that they document (by
example) the usage of the routines they cover. Unlike
comments, unit tests that are regularly run will be known to
reflect the current behavior of the code. If a routine has
unusual requirements or preconditions (such as requiring
that the foo routine must be called before calling baz on the
same object), that will generally be reflected in the setup for
the tests of baz, rather than waiting to be sprung on the
unsuspecting programmer who reuses what looks like a
perfectly useful routine in another context.

The full behavior of many EDA routines is not necessarily
apparent from the call or short description alone. One EDA
tool that we worked on in a previous company had three
different static routines to determine if a primitive cell was
combinational, all named isCombinational. All three
agreed that an AND cell was classified as combinational
and a DFF was not, but they disagreed on the classification
of other cells, such as LUTs and bus keepers. Unit testing
could make this difference explicit (and probably suggest
renaming two of these to names that were more
descriptive).

The use of unit testing is helpful for exploring the full range
of behavior for existing code, particularly if the original
developers are no longer available to ask questions about
the code. Often, we develop our understanding of what
such code does by reading through it and perhaps tracing
through it with a sample test case or two. This method
quickly breaks down as the code becomes more complex,
and it is easy to overlook corner-case behavior that can be
explored by appropriate unit tests.

Getting this code into a test harness may require doing
some relatively safe and conservative refactorings to break
dependencies on other code, as described by Feathers[5].
We note, however that few modifications are guaranteed
not to change existing behavior of legacy code that may
contain latent bugs and inadvertent use of undefined
behavior. We have seen even such a trivial change as
moving a global variable definition from one library to
another produce a change in some system test results.

3.5 The Pro-Active Search for Bugs
By more fully characterizing the behavior of our functions
and methods, we can identify design flaws in our current

implementation. As we identify the full range of possible
outputs from a function for various inputs, we can ask if the
users of these outputs can handle unusual values under
some input conditions that give rise to that value. This
allows us to be more pro-active about identifying possible
faults before a customer can encounter them.

Not every potential fault is worth worrying about. For
example, few of us try to write code that is absolutely
bulletproof against integer overflow or running out of
memory in the absence of evidence that these are likely to
be issues. But highlighting the potential interactions is
useful for identifying failure modes for further
investigation.

4. The Case Against Unit Testing
Not everyone agrees with a primary focus on unit testing for
reliability. Brian Marick [11] argued for larger subsystem
testing rather than individual unit tests, arguing that unit
testing was too expensive and too brittle to be sustainable.
We will examine these arguments in more detail below, but
we should also note that Marick was writing in 1995, before
the growing popularity of Extreme Programming brought a
renewed focus on the advantages of unit testing. We should
also note that many of our unit tests do in fact link in
production versions of various subsystems – the difference
is that Marick argued that such testing should be done
instead of separately validating the underlying components,
while we believe it should be done in addition to such
validation.

4.1 Cost/Time
While the benefits of unit testing can be significant, it is not
cost-free. Having good unit test coverage involves writing
a lot of non-customer facing code. Moreover, this coding
will generally be done by developers, rather than QA
engineers – it requires primary skill in development
languages such as C++ or Java rather than Verilog or
VHDL, and requires a focus on the internal code details.
(Although with the right skill mix, a QA engineer who can
work with the team to help refine their unit tests from the
beginning can be invaluable.) As such, it is in competition
for resources with the activities of coding and debugging
existing code.

The amount of effort required to develop good unit tests
may be comparable to or even exceed the effort to develop
the code being tested in the first place. Table 1 lists some
ratios of production code to test code for some non-EDA
C++ projects that use gtest[15] as a unit test engine. In
terms of lines of code, production code and test code are
roughly comparable for many projects. It is true that
developing unit tests for a given class may be simpler and
more stereotyped than the details of the algorithms for the
code, so extending the unit tests for a class once some are
available may go faster than developing equivalent lines of
functional code, but it is clear that the effort to develop unit

tests that completely cover a large project will itself be
large. On the other hand, it is possible to develop them a
few at a time.

Table I: Functional:Test lines of code for gtest projects

Project Functional
LOC

Test LOC Func:Test
Ratio

Gmock 14273 15082 1:1.06

Gtest 28694 25192 1.13:1

AutoComp[16] 80000 70000 1.14:1

We believe that the improved component quality that comes
from well-tested components and better-understood
components will pay dividends that will free up
development time in the long run and improve the quality of
the tool, leading to a better-planned and less interrupt-
driven development cycle. However, this is a view that
requires a long-term investment perspective. We believe
that a fair amount of unit-testing literature and discussion
oversells the ability to immediately recover the costs of unit
testing within a very short timespan. This is not necessarily
true for EDA code, and underscores the importance of
management that is willing to take a longer-term view.

4.2 Code Stability
One of us once worked for a manager who objected to our
early efforts to experiment with unit tests on the grounds
that only customer-facing interfaces were likely to be stable
enough to be more or less guaranteed not to change, for
explicit reasons of backwards compatibility. Internal EDA
code interfaces, he thought, were too likely to change to be
worth testing. Indeed, the (only semi-automated) unit tests
this author developed for a new algorithm there did become
obsolete when the algorithm needed to be moved earlier in
the design flow, to operate on a different data structure (a
precursor to the one it had originally operated on). The unit
tests were tied to features of the old data structure that did
not exist for the new structure, and could not be easily
adapted.

This is one type of code stability issue with unit tests – the
risk that the code will change in a way that makes the unit
tests obsolete. Another risk is that excessively detailed tests
may make it difficult to make necessary changes to the code
while preserving the tests. Another example from our past
experience: a test system that used lots of small functional
tests to verify the behavior of a tool. There were hundreds
of tests verifying that the tool could detect all possible
illegitimate combinations of command line flags and
options, each of which would cause the tool to put out a
usage string and stop. The problem was that each of these
was implemented with a comparison to a golden log file for
that test. This meant that any change – however trivial – to
that usage string would break hundreds of tests, each of
which needed to be individually checked. A five minute

code change could take hours to validate and update golden
files for each of the failing tests.

These problems are real, though addressable. It takes effort
to develop a truly robust set of tests that is neither too
brittle nor too constraining. The problem of brittle tests can
be addressed in part by coding strategies that modularize
and partition information so that no individual test is
dependent on the details of many classes and data
structures. It helps to be working in an object-oriented
language, where behavior can be composed from layers of
individually testable classes. It helps to test primarily the
class interfaces, rather than details of their implementations.
And some tests will indeed become obsolete as code
changes, as will some of the code itself. As a matter of
responsibility, it should be the developer’s responsibility to
maintain and update appropriate unit tests for the code he or
she develops, and to retire tests that are no longer
appropriate.

For minimizing rigidity, we should strive not to have too
many tests test the same functionality repeatedly, so that not
too many tests will have to change when the functionality
changes. It is fine to have lots of functional tests that verify
that a usage string is produced when illegal options are
invoked, but only one or two should test the actual value of
that string. If the rest could use regular expressions or
filters to gloss over the actual contents of the string, the
suite would have been more robust to changes in usage. In
general, unit tests that focus on specific behaviors of a class
under test are likely to be more focused on distinct
behaviors than functional tests, which of necessity must
include a fair amount of canned common behavior.

In addition, unit test fixtures written in an object-oriented
language can benefit from inheritance to factor out common
behavior that must be checked. Test fixtures in gtest are
C++ classes that can inherit from other test fixtures. So if
there is common behavior that must be checked for several
different test fixtures, such checks can be coded in a parent
test fixture class that the different test fixtures inherit from,
making sure that there is only one place that needs to be
fixed when this behavior changes.

4.3 The Altruist’s Dilemma
What we call the “Altruist’s Dilemma” is rooted in the costs
of developing unit tests. Many of the benefits of unit
testing cited in section 3 accrue to the entire team of
developers using unit tested code – the ability to more
quickly understand it, the ability to modify it without
breaking interface behavior required by the original
developer, and the higher productivity resulting from being
able to reuse this code without having to spend much time
debugging it. Moreover, these benefits are distributed over
time. On the other hand, the costs of developing the unit
tests are paid up front, and are paid by the original
developer. Particularly if there is not already a good unit

testing infrastructure in place, there may be considerable
overhead in getting things set up before any benefits at all
can be realized.

This asymmetry poses a considerable barrier to adoption for
the first developer to try to use unit testing on a project.
This developer will be paying all the costs initially, but
realizing only a fraction of the benefit. As a result, without
strong management support, this developer risks being seen
as less productive, with the associated career risk. It is
much better if a team can adopt or experiment with unit
testing together, where they can realize benefits from each
other’s unit tests and share the risks. But in a culture such
as EDA development, where there is no tradition of unit
testing, it may be difficult to persuade others to go along
with such a change in development style.

5. Alternatives to Unit Testing
While persistent unit tests that are shared by the whole
development team are the “gold standard” of testability,
many EDA developers may find themselves in
environments where it is not practical to develop such tests
for code they are working on. Perhaps management is
deeply skeptical of the value of unit testing, or policy is
such that all persistent tests need to be run against a full tool
executable. Or perhaps you have a unit test infrastructure,
but there isn’t time to develop persistent tests that cover the
particular code you are working on. What can the
conscientious developer who wants to develop reliable code
do in such an environment? Here are some suggestions that
one or both of us have used at various times in our careers.

5.1 One-off testing (in debugger, or ad-hoc
use)
Debuggers are not just static tools that allow you to observe
the behavior of running code without affecting it. Most
debuggers have the ability to set variables and call
functions while in the debugger, though those abilities may
be somewhat limited (e.g., the MS Visual Studio C++
debugger does not allow you to call templated functions
directly from a watch window – but you can call a standard
function that invokes a template call). This allows the
debugger to be used for one-off testing – if you want to see
what a function does when the second argument is 10, set a
breakpoint just before a call to that function, change the
variable value, and observe the results. Dynamically-typed
languanges are particularly useful to test in a debugger,
since you can construct arbitrary arguments and observe the
results. Statically-typed languages don’t usually allow you
to create new variables on the fly, but it can sometimes be
useful to have some global pointers of appropriately-
selected types coded into a program just for debugging.

Likewise, it can sometimes be useful to write a short throw-
away program that exercises a particular function, even in
the absence of a larger unit test environment.

Such testing is not as useful to the rest of the team as
persistent unit tests can be in documenting and verifying the
code against future changes – but at any rate you can have
some assurance that the code has been tried at least once on
a particular corner case.

5.2 Log inputs and outputs; look at usage
What happens when you want to know what a function does
in various corner cases, but aren’t able to or don’t have the
time to write individual unit tests? In that position, we once
inserted temporary logging code at the start and end of a
function, writing the input and output values to a log file.
Then we ran a full system test suite, and dredged through
the logs to see if the cases we were interested in happened
to occur naturally. We’ve used a similar approach to find
which test cases in a large suite exercise particular functions
in an existing code base.

5.3 Export function interface to tool
command line
If your test organization and infrastructure only allows tests
to be performed on the full tool, one way to convert unit
tests into system tests is to export the inputs and outputs of
internal functions into (undocumented) command line
functionality, such as exporting it into a Tcl function that
can be called from a tool command line. Then the unit test
can be written against such “system” behavior. One has to
be careful with this approach, as it can expose behavior and
information about the internal workings of the tool to end
users – but at least it allows the code to be tested.

5.4 Beyond Unit Testing
A fair number of bugs can be caught today by static
checkers such as Coverity® Static Analysis[17] or Gimple
Software’s PC-lint[18]. Dynamic checking using symbolic
execution in KLEE[19] has shown promise in finding bugs
in C code and covering execution paths not found in manual
tests. Perhaps someday this approach may be used for the
automated generation of unit test cases, much as ATPG is
used today to generate hardware test patterns.

6. Coding for Testability Guidelines
Here are some rough guidelines for writing more testable
code:

1) Keep it short. Massively long routines are hard to
test thoroughly. A block of lines that implements a
single concept should usually be extracted into its
own routine, which creates a seam for
observability and controllability.

2) Make it easy to instantiate stuff. If you can
construct an object without a lot of preliminaries,
it makes it easier to construct one to support
another test.

3) Beware mega classes. A class with dozens of
methods and responsibilities is hard to test. A

class that is composed of simpler (and separately
testable) interfaces is much easier.

4) Keep files focused. A single file that defines lots
of classes is hard to test, and likely to lead to link
dependencies. A file should generally define a
single class, or a small set of related classes.

5) Modularity is your friend. Testable code tends to
be more focused and modular.

6) Write tests along with the code. Even if you don’t
adopt full-out Test Driven Development (and the
complexity of EDA algorithms can make this
difficult), writing tests in parallel with writing code
can make it easier to test.

7) Write readable tests. The easier it is to look at a
test and see what it is doing, the easier it is to
understand what the code is expected to do, and
whether the test covers what we think it does.

7. Blue Pearl Experience
At Blue Pearl Software, we have been refactoring and
developing unit tests for a large (635K lines of C++, not
counting external libraries) EDA tool over the past several
months. This is the start of a multi-year project to improve
the quality of our software and cover much of our software
with unit tests.

Our primary build tool is Cmake [20]. We use the open-
source Google Test (gtest) and Google Mock (gmock)
[15,21] to define the unit tests and build one or more unit
test executables per library, and Ctest[20] as the framework
to run the test executables. Gtest and gmock come with
Cmake configuration files, and were easily integrated into
our source tree as external imports. For additional
refactoring support, we use Visual Assist X[22].

The full set of unit tests developed to date is run on all
platforms to qualify a build for QA system testing – if the
unit tests fail, the build is rejected and the QA tests are not
run. Individual developers can run the full set of unit tests
or just the tests associated with a particular library or suite.

For the moment, developing unit tests has been primarily a
background task as we experiment with how to bring
significant sections of code under test and explore how unit
tests fit with various projects. As of this writing, we have
written around 5000 lines of unit tests. If we assume that
we will eventually need around a 1:1 ratio of test code to
product code, we stand at around 0.8% of our goal over the
next few years. Our overall quality strategy remains multi-
pronged, with system-level tests still carrying the majority
of the quality burden. But we have found that unit-level
tests offer much more detailed testing of the code, which
will be important as we move forward and bring larger
sections of the code under test.

Given our current level of coverage, most of the case
studies we can offer are either examples where we have
used unit tests to explore surprising behavior of existing
code, or where unit tests could have saved time and broken
builds had they been in place.

7.1 Platform Conversion
One area where even minimal unit tests were useful to us
was when adding support for a 64-bit build on a new
version of one of our platforms. The unit tests flagged
some minor differences between the 32 and 64 bit builds
during the build process. Unfortunately, we did not yet
have unit tests covering another area of the code, where a
sentinel value of (size_t) -1 was being used to flag deleted
objects that had not yet been removed. Some of the legacy
routines manipulating those objects passed an unsigned int
as the type instead, which failed to match on a 64-bit
platform. Having unit tests covering basic insertion and
deletion of objects from the enclosing data structure would
have saved us a couple of days of broken builds while
trying to debug some rather bizarre behavior resulting from
an inconsistent data structure.

7.2 Identifying Surprising Behavior
Unit tests can be helpful in identifying surprising behavior
from legacy code. For example, here are some tests we
developed for a utility data value class that was being used
both in simulation and to encode module parameter values:

So far, it seemed to be a nice utility class that provided type
conversion as a bonus. But the test of the setStringValue
method proved surprising (note: these are not the original
expected values, but the values that were reported back
from our first, failing, unit test as to what the API actually
returned):

The setStringValue method interpreted its argument string
as a four-valued (01XZ) binary value. This surprising
behavior (especially since the API also provided a method
called setBinaryValue that did almost the same thing) was

dv1.setStringValue("10");
EXPECT_EQ(2,dv1.getDecimalValue());
EXPECT_DOUBLE_EQ(2.0,dv1.getRealValue());
EXPECT_EQ("2'b10", dv1.getValueString());

drDataValue dv1;
dv1.setDecimalValue(10);
EXPECT_EQ(10,dv1.getDecimalValue());
EXPECT_DOUBLE_EQ(10.0,dv1.getRealValue());
EXPECT_EQ("10", dv1.getValueString());

dv1.setRealValue(10.0);
EXPECT_EQ(10, dv1.getDecimalValue());
EXPECT_DOUBLE_EQ(10.0, dv1.getRealValue());
EXPECT_EQ("10", dv1.getValueString());

not documented in the header file that defined the class.
The behavior was described in a comment in the
implementation code, but not every user of an API can be
expected to read the full implementation. Such surprising
behavior is a bug waiting to happen when the code is reused
or extended. This API has since been revised and
documented in both the unit tests and the header file.

7.3 Testing Complex Data Structures
One reason that EDA unit tests can be challenging to write,
at least initially, is that so much of our code is data-
structure driven. Our use cases tend to involve various
configurations of nets, ports, instances, and so on, all of
which must be hooked up properly in the test setup because
the code under test will be navigating those data structures
directly. Crucial differences in behavior may be dependent
on the exact settings of various flags and attributes of
different objects within a netlist. Keeping tests readable as
the setup gets longer and more complex is challenging.

These issues have come up for us in writing unit tests for
some code that interacts with a third-party HDL parser.
One of the key questions has been whether to include the
full parser in these unit tests, driving them from Verilog or
VHDL sources, or instead to build the test cases up out of
objects from the parser database API. For the moment, we
have taken the latter approach, which allows us greater
control of the generated data structures, and removes
possible dependencies on the parser version or options
used. There is a tradeoff here: testing against the actual
parser would mean that all our test cases could arise from
actual user input, but that we might not cover all possible
data structure configurations. Testing with constructed data
structures means that we might construct cases that could
not actually arise in practice, but allows us to help make our
code more robust against any possible configuration.

We have been able to make these tests more readable by
developing some test helper functions that construct certain
stereotyped patterns of objects relevant to groups of tests.
This takes more time initially, but makes development of
subsequent tests easier.

8. Conclusions
The principles of controllability and observability govern
software as well as hardware testing. If we are going to
catch faults with our tests, we need to be able to make the
faulty behavior happen, and we need to notice when it does.
Traditional testing methods used in EDA don’t do a very
good job of providing controllability and observability of
internal software components. Unit testing, coupled with
refactoring of existing code to make it more testable, offers
far more control and observability of software component
behavior. At Blue Pearl Software, we are using unit testing
to improve the quality of our software components and
deliver better quality software to our customers.

9. REFERENCES
[1] M. Fowler et al, Refactoring: Improving the Design of

Existing Code, Addison-Wesley, 1999.

[2] E. B. Eichelberger and T. W. Williams, “A Logic Design
Structure for LSI Testability,” Proceedings of the 1977
Design Automation Conference. Reprinted in 25 Years of
Design Automation, pp. 358-364.

[3] M. J. Y. Williams and J. B. Angell, “Enhancing Testability
of Large Scale Integrated Circuits vis Test Points and
Additional Logic,” IEEE Trans. Computers, C-22 (1973),
pp. 46-60.

[4] J.P. Roth, “Diagnosis of Automata Failures: A Calculus and
a Method,” IBM Journal of Research and Development, Vol.
10, No. 4, July 1966, pp 278-291.

[5] M. C. Feathers, Working Effectively With Legacy Code,
Prentice Hall PTR, Upper Saddle River, NJ, 2005.

[6] R. Osherove, The Art of Unit Testing with Examples in .Net,
Manning Publications, Greenwich, CT, 2009.

[7] http://en.wikipedia.org/wiki/Unit_testing, retrieved 3/4/2012.

[8] http://softwaretestingfundamentals.com/unit-testing/,
retrieved 3/4/2012

[9] http://c2.com/cgi/wiki?StandardDefinitionOfUnitTest,
retrieved 3/4/2012

[10] S. McConnell, Code Complete, Second Edition, Microsoft
Press, Redmond Washington, 2004.

[11] B. Marick, The Craft of Software Testing: Subsystem
Testing, Including Object-Based and Object-Oriented
Testing, Prentice Hall PTR, Englewood Cliffs, NJ, 1995.

[12] R.L. Glass, “Extreme Programming: The Good, the Bad, and
the Bottom Line,” IEEE Software, November/December
2001, pp 111-112.

[13] M. Fowler, “Mocks Aren’t Stubs,”
http://martinfowler.com/articles/mocksArentStubs.html,
January 2007, retrieved 3/6/2012.

[14] K. Beck, Test-Driven Development: by Example, Addison-
Wesley, 2003.

[15] http://code.google.com/p/googletest

[16] J. Oravec, personal communication.

[17] http://www.coverity.com

[18] http://www.gimpel.com

[19] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2008),
December 2008.

[20] http://www.cmake.org

[21] http://code.google.com/p/googlemock

[22] http://www.wholetomato.com

