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Abstract 
Many EDA development groups rely on full tool testing as 
the only means of determining program correctness.  
Meanwhile, other software development communities have 
made use of extensive unit tests as a method of assuring 
high-quality components.  We believe that the value of such 
testing is derived from principles familiar to the EDA 
community from hardware test generation: the need for 
both controllability and observability of a unit under test to 
verify correct behavior. 

We believe that unit testing has value both for the 
development of new code and for the understanding and 
adoption of existing code, though it may require substantial 
refactoring* to make older code testable. 

We explore both the value and costs of unit testing for EDA 
software, as well as noting some alternatives to stand-alone 
unit testing that may provide some degree of observability 
and controllability when full unit testing is impractical.  We 
describe tools and resources we have used in putting 
together a unit test infrastructure at Blue Pearl Software. 

1. INTRODUCTION 
The field of Electronic Design Automation has developed a 
great understanding of how to build and test massively 
complex hardware designs to assure a high degree of 
reliability.  Yet, like the proverbial shoemaker’s children 
going barefoot, we EDA developers have often failed to 
apply this understanding to the design and development of 
our own software.   All too often, we content ourselves with 
full system testing of our tools on a combination of sample 
designs with known results and customer designs with 
presumed good results.  While this is often sufficient to 
detect gross misbehavior, such as crashes, it does little to 
ensure that the underlying components are robust, 
performing optimally, or are adaptable to new 
requirements.   This is the software equivalent of shipping 
any microprocessor that can execute a few sample 
instruction sequences correctly and boot the operating 
system without causing a hardware panic.  Few of us would 

                                                           
* Refactoring is modifying code to improve its structure 

without changing its behavior. [1] 

argue that such a testing regime would be sufficient to 
assure quality hardware performance in the field, given the 
complexity of modern hardware designs.   Neither is the 
software equivalent sufficient to assure robust performance 
of the tools we provide. 

A related question is: how can we understand and adapt 
existing EDA software once the original developers have 
moved on?  Much EDA software is based on legacy code 
that was developed elsewhere, or is being maintained by 
persons other than the original developers.  The EDA 
landscape is full of companies that are acquired, 
development teams that have moved on, and university 
software that is adapted to use in a commercial 
environment.    How well do we understand the strengths 
and limitations of inherited code?  Even if it is extensively 
field-tested (and thus likely free of gross errors), will it 
work properly when faced with new conditions and new 
designs?  Can we determine how to extend and modify such 
code while keeping the core algorithms correct, or must we 
treat it as a black box that can be called and assumed to 
yield correct results, but never touched? 

While there are few if any reliable surveys of development 
methods across EDA companies, the two of us have a 
collective 51 years of experience with EDA development at 
13 different companies.  We are confident that the problems 
we discuss are widespread throughout the EDA industry, 
not the isolated pathologies of one or two individual 
companies. 

These ideas are not a panacea.  There is no quick or easy fix 
that will guarantee an absence of bugs.  We view this as the 
start of a multi-year effort to transform the culture and the 
software of an EDA company in order to get more reliable 
and maintainable software, and a more predictable 
development cycle. 

2. Background: Controllability and 
Observability 
What lessons can we draw from the hardware test 
community?   Two of the most significant advances that 
gave rise to modern ATPG were scan testing[2,3] and the 
D-algorithm for combinational test pattern generation[4].  
These two advances supported each other: the D-algorithm 



allowed the automatic generation of test patterns that would 
expose faults in a combinational network, while scan testing 
decoupled the sequential behavior of a system from its 
combinational behavior, allowing these patterns to be 
applied to logic gates throughout a chip and the results 
observed. 

Two key concepts used here are controllability and 
observability.  In order to detect a presumed fault on a unit 
under test (modeled as a stuck-at value on a logic 
connection), we need to be able to control the inputs so as 
to activate the faulty behavior (controllability), and we need 
to also to propagate the effects of the fault to a point where 
we can observe the difference between the good system 
behavior and the faulty system behavior (observability). 

Scan testing allows us to decompose complex hardware 
systems into smaller units that can be individually tested.  It 
allows us to move controllability and observability points 
from the system I/Os to the state elements of the design, 
allowing more faults to be tested, and simplifying both the 
generation of tests and the interpretation of the results. 

These same principles apply to software as well as 
hardware.  If a software test is to expose faulty behavior in 
a unit of code, we need to be able to control the inputs of 
the unit so as to activate the faulty behavior, and we need to 
be able to observe the consequences of that fault in the 
outputs.  Just as with hardware, testing using only the full 
system inputs and outputs is usually not sufficient to cover 
all the possible faults of subsystems, and certainly makes 
certain tests harder to write, even if we can theoretically 
express that test as a functional test.  For thorough test 
coverage, we need to be able to access internal observation 
and control points in the software – what Michael Feathers 
refers to as “seams” [5, p. 31] in the code, which serve an 
analogous function to scan registers in hardware testing. 

These seams will be used to allow testing of individual 
functions, methods, and classes in test harnesses.   

3. The Case For Unit Testing 
What is a unit test?  Various sources [5 p. 12, 6 pp. 4-7, 7, 
8, 9, 10 p. 499, 11 p. 8] agree that a unit test is a test of an 
individual unit of software, generally a method, function or 
procedure, but possibly an entire module or class interface.  
It often involves a separate test harness, involving drivers 
and stubs, to test a single unit or group of units in relative 
isolation. 

In his critique of Extreme Programming, Robert Glass 
called unit testing possibly “the most agreed-upon software 
best practice of all time.”[12]  However, this kind of unit 
testing has not been routinely used in EDA in our 
experience.  Neither of us has ever worked in an EDA team 
where such stand-alone unit tests were developed and 
shared by any other team member.  If any such testing was 
done, it was kept private by individual developers and 

discarded once their code had been integrated into the rest 
of the tool.  There is, however an alternate definition that 
has been used by two of the teams we have worked with, 
where unit test is used to refer to a small system test case 
that tests a single feature or scenario of the software tool.  
In this paper, we use “unit test” to refer to the first usage; 
the latter may be referred to as a small functional test.  

3.1 Bug Example 
Consider the following line of C code: 

 
Does it work?  Is it reliable?  Does it accomplish what the 
comment suggests it should do? 

This calculation appeared in nearly a dozen different places 
in a commercial EDA tool one of us once worked on.   It 
was attempting to calculate what internal clock cycle would 
correspond to the next user clock edge, for a user clock that 
occurred every m internal cycles.   It had never been the 
subject of a user bug report, and the tool passed every 
regression test without complaint. 

Yet a bit of hand simulation shows that this calculation is 
incorrect.  For t=7, m=3, the code rounds t up to 8, not 9.  
For t=8, m=3, it rounds to 10.  For t=17, m=4, it rounds to 
18 rather than 20. 

The primary reason this bug had remained undetected for so 
long was that all but one of the regression tests, and most of 
the user experience to date, had been operating on blocks 
with a single primary user clock, where m=1 or 2.  This 
buggy calculation works whenever t is an integer multiple 
of m/2, which is always the case for these values of m.  But 
the company was about to support more accurate models 
for multiple clocks, which would require larger values of m.   

This brings up one aspect of EDA development: we 
frequently reuse code under new conditions that will stress 
it in ways not previously experienced.  Just because code 
was used without apparent errors in a previous deployment 
does not mean that it will continue to be reliable when the 
requirements change. 

To test a single line like that in the middle of a several 
hundred line routine is challenging.  Not only do we have to 
set up the conditions that will trigger the faulty behavior, 
we need to trace what conditions on other variables and 
data structures will result in a change in the observable 
behavior on the outputs of the big routine.  But suppose 
instead that we had refactored this particular calculation 
into a separate, one-line function (correcting the faulty 
calculation in the process): 

 

/* Round t up to next multiple of m */ 

t = t + t%m; 

int RoundUpToMultiple(int num, int mod) { 

  return num%mod? num+mod–num%mod: num; } 



Now we have observability and controllability points 
directly before and after the suspect code, and we can call it 
directly from a test harness: 

 
By testing so close to the code, we can validate the 
functionality directly.  This does not imply that every 
calculation should be its own function, but note that in this 
case, doing so allows the different places performing this 
calculation to reuse a single tested implementation instead 
of copying their own.  In general, coding for testability will 
involve writing more modular and shorter routines and 
methods than code written without such considerations. 

3.2 Seams in the Code 
Feathers [5] defines a seam as “a place where you can alter 
behavior in your program without editing in that place.”  
Calling a function from a test harness rather than production 
code as above might seem to qualify.  His usage, though, is 
mostly focused on creating seams that allow us to modify 
either the arguments passed to a function/method or 
routines called by the function/method in order to break 
dependencies and allow the code to be tested in relative 
isolation.  

He defines three types of seams that can be used to get code 
under test: preprocessor seams, link seams, and object 
seams.  Preprocessor seams make use of the preprocessor to 
change the behavior, such as using a #define to distinguish 
between testing mode and system mode.  Link seams 
change behavior by linking different object libraries with 
the code under test – for example, linking with stubs or 
mock objects for testing rather than the real thing (for the 
distinction between the two, see [13]).  Object seams use 
the inheritance hierarchy of an object-oriented language 
like C++ or Java to substitute test objects with a common 
interface in place of real objects in a test harness. 

One example of creating an object seam to break build 
dependencies occurred in a early unit test we wrote at Blue 
Pearl.  We needed an instance of a Net object from our 
internal database, which required instantiating a Module.  
(Faking out the Net object – or the Module – was 
considered impractical, because of the amount of Net 
behavior the class under test required.)  Linking the Module 
code required accessing a method called 
getPrimitivePinName from a global instance of a big 
DesignAttributes class, and trying to link that class would 
have required linking in a lot of additional code.  So 
instead, since this method was the only behavior that 

Module needed from DesignAttributes, we created an 
abstract class AbstractPinRenamer, that just supports a 
getPrimitivePinName method with the same interface as the 
DesignAttributes one.  Then we had both DesignAttributes 
and a new test class inherit from AbstractPinRenamer, and 
changed the Module code to interact with an 
AbstractPinRenamer rather than a DesignAttributes.  Now 
the test code could interact with the smaller test class, while 
the production code still used a DesignAttributes.  This is 
an example of the AbstractInterface pattern from 
Feathers[5].   

3.3 Reducing the Development/Test Cycle 
One of the key reasons to adopt unit testing is to speed up 
the development/test cycle to give near-instantaneous 
feedback on code that we develop.  The quicker we can get 
testing feedback, the easier it is to understand and fix our 
mistakes, and the less likely it is that our mistakes will 
inconvenience our fellow developers by getting checked in 
to a shared repository trunk.  

This cycle time has important qualitative effects on how we 
use test feedback.  A test suite that involves lots of long-
running user test cases that takes a day or so to run through 
will probably not be run before developers check in code.  
Even if they do, the odds are that someone else will make a 
change that must be merged before checkin, so that the 
code being tested will not be exactly the same as the code 
that is checked in.  Moreover, debugging such examples 
when they fail also takes a long time, so when the trunk is 
broken it may stay broken for a few days. 

If we can reduce the run time to several minutes on a single 
machine (either by running a moderate number of quick-
running small functional tests, or very few larger tests), we 
can get a test suite that can be run before checkins and at 
the conclusion of major blocks of work.  This is a big 
improvement over the overnight test suite, and decreases 
the chances of checking in bad code.  Most EDA 
organizations have or develop such a suite.  But several 
minutes is still a significant barrier to routine use of tests 
during development.  It requires a significant interruption of 
work to switch from developing code to running the tests, 
which discourages developers from running the tests except 
at natural breaks in their work flow.  Also note that any test 
suite that relies on running a full EDA tool will have a 
certain amount of startup time overhead for each test case, 
such as getting licenses and reading startup files, which 
limits the number of  test cases that can be included if the 
suite must run in a few minutes. 

Finally, if we can reduce the run time of a test suite to a few 
seconds, rather than minutes, we get tests that can be 
routinely run as part of normal development activity.  This 
is one goal of unit testing.  If it only takes us a few seconds 
to verify that the interface behavior of a class we are 
modifying hasn’t changed (unintentionally), we can run 

EXPECT_EQUAL(4, RoundUpToMultiple(4, 2)); 

EXPECT_EQUAL(6, RoundUpToMultiple(5, 2)); 

EXPECT_EQUAL(6, RoundUpToMultiple(4, 3)); 

EXPECT_EQUAL(6, RoundUpToMultiple(5, 3)); 

EXPECT_EQUAL(3, RoundUpToMultiple(3, 3));  



these tests repeatedly as we modify the implementation.  (In 
such a development loop, we would typically run just the 
unit tests associated with the files or libraries we are 
modifying – we would run a larger suite before checkin.)  
This can facilitate development techniques such as Test-
Driven Development (TDD) [14].  We want individual unit 
tests to run extremely quickly – milliseconds or even 
microseconds – so that we can run hundreds or thousands of 
them in just a few seconds.   

3.4 Documenting behavior 
One of the key values of unit tests is that they document (by 
example) the usage of the routines they cover.  Unlike 
comments, unit tests that are regularly run will be known to 
reflect the current behavior of the code.  If a routine has 
unusual requirements or preconditions (such as requiring 
that the foo routine must be called before calling baz on the 
same object), that will generally be reflected in the setup for 
the tests of baz, rather than waiting to be sprung on the 
unsuspecting programmer who reuses what looks like a 
perfectly useful routine in another context. 

The full behavior of many EDA routines is not necessarily 
apparent from the call or short description alone.  One EDA 
tool that we worked on in a previous company had three 
different static routines to determine if a primitive cell was 
combinational, all named isCombinational.  All three 
agreed that an AND cell was classified as combinational 
and a DFF was not, but they disagreed on the classification 
of other cells, such as LUTs and bus keepers. Unit testing 
could make this difference explicit (and probably suggest 
renaming two of these to names that were more 
descriptive). 

The use of unit testing is helpful for exploring the full range 
of behavior for existing code, particularly if the original 
developers are no longer available to ask questions about 
the code.  Often, we develop our understanding of what 
such code does by reading through it and perhaps tracing 
through it with a sample test case or two.  This method 
quickly breaks down as the code becomes more complex, 
and it is easy to overlook corner-case behavior that can be 
explored by appropriate unit tests. 

Getting this code into a test harness may require doing 
some relatively safe and conservative refactorings to break 
dependencies on other code, as described by Feathers[5].  
We note, however that few modifications are guaranteed 
not to change existing behavior of legacy code that may 
contain latent bugs and inadvertent use of undefined 
behavior.  We have seen even such a trivial change as 
moving a global variable definition from one library to 
another produce a change in some system test results.  

3.5 The Pro-Active Search for Bugs 
By more fully characterizing the behavior of our functions 
and methods, we can identify design flaws in our current 

implementation.  As we identify the full range of possible 
outputs from a function for various inputs, we can ask if the 
users of these outputs can handle unusual values under 
some input conditions that give rise to that value.  This 
allows us to be more pro-active about identifying possible 
faults before a customer can encounter them. 

Not every potential fault is worth worrying about.  For 
example, few of us try to write code that is absolutely 
bulletproof against integer overflow or running out of 
memory in the absence of evidence that these are likely to 
be issues.  But highlighting the potential interactions is 
useful for identifying failure modes for further 
investigation.  

4. The Case Against Unit Testing 
Not everyone agrees with a primary focus on unit testing for 
reliability.  Brian Marick [11] argued for larger subsystem 
testing rather than individual unit tests, arguing that unit 
testing was too expensive and too brittle to be sustainable.  
We will examine these arguments in more detail below, but 
we should also note that Marick was writing in 1995, before 
the growing popularity of Extreme Programming brought a 
renewed focus on the advantages of unit testing.  We should 
also note that many of our unit tests do in fact link in 
production versions of various subsystems – the difference 
is that Marick argued that such testing should be done 
instead of separately validating the underlying components, 
while we believe it should be done in addition to such 
validation.   

4.1 Cost/Time 
While the benefits of unit testing can be significant, it is not 
cost-free.  Having good unit test coverage involves writing 
a lot of non-customer facing code.  Moreover, this coding 
will generally be done by developers, rather than QA 
engineers – it requires primary skill in development 
languages such as C++ or Java rather than Verilog or 
VHDL, and requires a focus on the internal code details.  
(Although with the right skill mix, a QA engineer who can 
work with the team to help refine their unit tests from the 
beginning can be invaluable.)    As such, it is in competition 
for resources with the activities of coding and debugging 
existing code. 

The amount of effort required to develop good unit tests 
may be comparable to or even exceed the effort to develop 
the code being tested in the first place.  Table 1 lists some 
ratios of production code to test code for some non-EDA 
C++ projects that use gtest[15] as a unit test engine.  In 
terms of lines of code, production code and test code are 
roughly comparable for many projects.  It is true that 
developing unit tests for a given class may be simpler and 
more stereotyped than the details of the algorithms for the 
code, so extending the unit tests for a class once some are 
available may go faster than developing equivalent lines of 
functional code, but it is clear that the effort to develop unit 



tests that completely cover a large project will itself be 
large.  On the other hand, it is possible to develop them a 
few at a time. 

Table I: Functional:Test lines of code for gtest projects 

Project Functional 
LOC 

Test LOC Func:Test 
Ratio 

Gmock 14273 15082 1:1.06 

Gtest 28694 25192 1.13:1 

AutoComp[16] 80000 70000 1.14:1 

We believe that the improved component quality that comes 
from well-tested components and better-understood 
components will pay dividends that will free up 
development time in the long run and improve the quality of 
the tool, leading to a better-planned and less interrupt-
driven development cycle.  However, this is a view that 
requires a long-term investment perspective.  We believe 
that a fair amount of unit-testing literature and discussion 
oversells the ability to immediately recover the costs of unit 
testing within a very short timespan.  This is not necessarily 
true for EDA code, and underscores the importance of 
management that is willing to take a longer-term view. 

4.2 Code Stability 
One of us once worked for a manager who objected to our 
early efforts to experiment with unit tests on the grounds 
that only customer-facing interfaces were likely to be stable 
enough to be more or less guaranteed not to change, for 
explicit reasons of backwards compatibility.  Internal EDA 
code interfaces, he thought, were too likely to change to be 
worth testing.  Indeed, the (only semi-automated) unit tests 
this author developed for a new algorithm there did become 
obsolete when the algorithm needed to be moved earlier in 
the design flow, to operate on a different data structure (a 
precursor to the one it had originally operated on).  The unit 
tests were tied to features of the old data structure that did 
not exist for the new structure, and could not be easily 
adapted. 

This is one type of code stability issue with unit tests – the 
risk that the code will change in a way that makes the unit 
tests obsolete.  Another risk is that excessively detailed tests 
may make it difficult to make necessary changes to the code 
while preserving the tests.  Another example from our past 
experience: a test system that used lots of small functional 
tests to verify the behavior of a tool.  There were hundreds 
of tests verifying that the tool could detect all possible 
illegitimate combinations of command line flags and 
options, each of which would cause the tool to put out a 
usage string and stop.  The problem was that each of these 
was implemented with a comparison to a golden log file for 
that test.  This meant that any change – however trivial – to 
that usage string would break hundreds of tests, each of 
which needed to be individually checked.  A five minute 

code change could take hours to validate and update golden 
files for each of the failing tests. 

These problems are real, though addressable.  It takes effort 
to develop a truly robust set of tests that is neither too 
brittle nor too constraining.  The problem of brittle tests can 
be addressed in part by coding strategies that modularize 
and partition information so that no individual test is 
dependent on the details of many classes and data 
structures.  It helps to be working in an object-oriented 
language, where behavior can be composed from layers of 
individually testable classes.  It helps to test primarily the 
class interfaces, rather than details of their implementations.  
And some tests will indeed become obsolete as code 
changes, as will some of the code itself.  As a matter of 
responsibility, it should be the developer’s responsibility to 
maintain and update appropriate unit tests for the code he or 
she develops, and to retire tests that are no longer 
appropriate. 

For minimizing rigidity, we should strive not to have too 
many tests test the same functionality repeatedly, so that not 
too many tests will have to change when the functionality 
changes.  It is fine to have lots of functional tests that verify 
that a usage string is produced when illegal options are 
invoked, but only one or two should test the actual value of 
that string.  If the rest could use regular expressions or 
filters to gloss over the actual contents of the string, the 
suite would have been more robust to changes in usage.  In 
general, unit tests that focus on specific behaviors of a class 
under test are likely to be more focused on distinct 
behaviors than functional tests, which of necessity must 
include a fair amount of canned common behavior. 

In addition, unit test fixtures written in an object-oriented 
language can benefit from inheritance to factor out common 
behavior that must be checked.  Test fixtures in gtest are 
C++ classes that can inherit from other test fixtures.  So if 
there is common behavior that must be checked for several 
different test fixtures, such checks can be coded in a parent 
test fixture class that the different test fixtures inherit from, 
making sure that there is only one place that needs to be 
fixed when this behavior changes. 

4.3 The Altruist’s Dilemma 
What we call the “Altruist’s Dilemma” is rooted in the costs 
of developing unit tests.  Many of the benefits of unit 
testing cited in section 3 accrue to the entire team of 
developers using unit tested code – the ability to more 
quickly understand it, the ability to modify it without 
breaking interface behavior required by the original 
developer, and the higher productivity resulting from being 
able to reuse this code without having to spend much time 
debugging it.  Moreover, these benefits are distributed over 
time.  On the other hand, the costs of developing the unit 
tests are paid up front, and are paid by the original 
developer.  Particularly if there is not already a good unit 



testing infrastructure in place, there may be considerable 
overhead in getting things set up before any benefits at all 
can be realized. 

This asymmetry poses a considerable barrier to adoption for 
the first developer to try to use unit testing on a project.  
This developer will be paying all the costs initially, but 
realizing only a fraction of the benefit.  As a result, without 
strong management support, this developer risks being seen 
as less productive, with the associated career risk.  It is 
much better if a team can adopt or experiment with unit 
testing together, where they can realize benefits from each 
other’s unit tests and share the risks.  But in a culture such 
as EDA development, where there is no tradition of unit 
testing, it may be difficult to persuade others to go along 
with such a change in development style. 

5. Alternatives to Unit Testing 
While persistent unit tests that are shared by the whole 
development team are the “gold standard” of testability, 
many EDA developers may find themselves in 
environments where it is not practical to develop such tests 
for code they are working on.  Perhaps management is 
deeply skeptical of the value of unit testing, or policy is 
such that all persistent tests need to be run against a full tool 
executable.  Or perhaps you have a unit test infrastructure, 
but there isn’t time to develop persistent tests that cover the 
particular code you are working on.  What can the 
conscientious developer who wants to develop reliable code 
do in such an environment?  Here are some suggestions that 
one or both of us have used at various times in our careers. 

5.1 One-off testing (in debugger, or ad-hoc 
use) 
Debuggers are not just static tools that allow you to observe 
the behavior of running code without affecting it.  Most 
debuggers have the ability to set variables and call 
functions while in the debugger, though those abilities may 
be somewhat limited (e.g., the MS Visual Studio C++ 
debugger does not allow you to call templated functions 
directly from a watch window – but you can call a standard 
function that invokes a template call).  This allows the 
debugger to be used for one-off testing – if you want to see 
what a function does when the second argument is 10, set a 
breakpoint just before a call to that function, change the 
variable value, and observe the results.  Dynamically-typed 
languanges are particularly useful to test in a debugger, 
since you can construct arbitrary arguments and observe the 
results.  Statically-typed languages don’t usually allow you 
to create new variables on the fly, but it can sometimes be 
useful to have some global pointers of appropriately-
selected types coded into a program just for debugging. 

Likewise, it can sometimes be useful to write a short throw-
away program that exercises a particular function, even in 
the absence of a larger unit test environment. 

Such testing is not as useful to the rest of the team as 
persistent unit tests can be in documenting and verifying the 
code against future changes – but at any rate you can have 
some assurance that the code has been tried at least once on 
a particular corner case. 

5.2 Log inputs and outputs; look at usage 
What happens when you want to know what a function does 
in various corner cases, but aren’t able to or don’t have the 
time to write individual unit tests?  In that position, we once 
inserted temporary logging code at the start and end of a 
function, writing the input and output values to a log file.  
Then we ran a full system test suite, and dredged through 
the logs to see if the cases we were interested in happened 
to occur naturally.   We’ve used a similar approach to find 
which test cases in a large suite exercise particular functions 
in an existing code base. 

5.3 Export function interface to tool 
command line 
If your test organization and infrastructure only allows tests 
to be performed on the full tool, one way to convert unit 
tests into system tests is to export the inputs and outputs of 
internal functions into (undocumented) command line 
functionality, such as exporting it into a Tcl function that 
can be called from a tool command line.  Then the unit test 
can be written against such “system” behavior.  One has to 
be careful with this approach, as it can expose behavior and 
information about the internal workings of the tool to end 
users – but at least it allows the code to be tested. 

5.4 Beyond Unit Testing 
A fair number of bugs can be caught today by static 
checkers such as Coverity® Static Analysis[17] or Gimple 
Software’s PC-lint[18].   Dynamic checking using symbolic 
execution in KLEE[19] has shown promise in finding bugs 
in C code and covering execution paths not found in manual 
tests.  Perhaps someday this approach may be used for the 
automated generation of unit test cases, much as ATPG is 
used today to generate hardware test patterns. 

6. Coding for Testability Guidelines 
Here are some rough guidelines for writing more testable 
code: 

1) Keep it short.  Massively long routines are hard to 
test thoroughly.  A block of lines that implements a 
single concept should usually be extracted into its 
own routine, which creates a seam for 
observability and controllability. 

2) Make it easy to instantiate stuff.  If you can 
construct an object without a lot of preliminaries, 
it makes it easier to construct one to support 
another test. 

3) Beware mega classes.  A class with dozens of 
methods and responsibilities is hard to test.  A 



class that is composed of simpler (and separately 
testable) interfaces is much easier. 

4) Keep files focused.  A single file that defines lots 
of classes is hard to test, and likely to lead to link 
dependencies.  A file should generally define a 
single class, or a small set of related classes. 

5) Modularity is your friend.  Testable code tends to 
be more focused and modular. 

6) Write tests along with the code.  Even if you don’t 
adopt full-out Test Driven Development (and the 
complexity of EDA algorithms can make this 
difficult), writing tests in parallel with writing code 
can make it easier to test. 

7) Write readable tests.  The easier it is to look at a 
test and see what it is doing, the easier it is to 
understand what the code is expected to do, and 
whether the test covers what we think it does. 

7. Blue Pearl Experience 
At Blue Pearl Software, we have been refactoring and 
developing unit tests for a large (635K lines of C++, not 
counting external libraries) EDA tool over the past several 
months.  This is the start of a multi-year project to improve 
the quality of our software and cover much of our software 
with unit tests. 

Our primary build tool is Cmake [20].  We use the open-
source Google Test (gtest) and Google Mock (gmock) 
[15,21] to define the unit tests and build one or more unit 
test executables per library, and Ctest[20] as the framework 
to run the test executables.  Gtest and gmock come with 
Cmake configuration files, and were easily integrated into 
our source tree as external imports.  For additional 
refactoring support, we use Visual Assist X[22]. 

The full set of unit tests developed to date is run on all 
platforms to qualify a build for QA system testing – if the 
unit tests fail, the build is rejected and the QA tests are not 
run.  Individual developers can run the full set of unit tests 
or just the tests associated with a particular library or suite.   

For the moment, developing unit tests has been primarily a 
background task as we experiment with how to bring 
significant sections of code under test and explore how unit 
tests fit with various projects.  As of this writing, we have 
written around 5000 lines of unit tests.  If we assume that 
we will eventually need around a 1:1 ratio of test code to 
product code, we stand at around 0.8% of our goal over the 
next few years.   Our overall quality strategy remains multi-
pronged, with system-level tests still carrying the majority 
of the quality burden.  But we have found that unit-level 
tests offer much more detailed testing of the code, which 
will be important as we move forward and bring larger 
sections of the code under test. 

Given our current level of coverage, most of the case 
studies we can offer are either examples where we have 
used unit tests to explore surprising behavior of existing 
code, or where unit tests could have saved time and broken 
builds had they been in place. 

7.1 Platform Conversion 
One area where even minimal unit tests were useful to us 
was when adding support for a 64-bit build on a new 
version of one of our platforms.  The unit tests flagged 
some minor differences between the 32 and 64 bit builds 
during the build process.  Unfortunately, we did not yet 
have unit tests covering another area of the code, where a 
sentinel value of (size_t) -1 was being used to flag deleted 
objects that had not yet been removed.  Some of the legacy 
routines manipulating those objects passed an unsigned int 
as the type instead, which failed to match on a 64-bit 
platform.  Having unit tests covering basic insertion and 
deletion of objects from the enclosing data structure would 
have saved us a couple of days of broken builds while 
trying to debug some rather bizarre behavior resulting from 
an inconsistent data structure. 

7.2 Identifying Surprising Behavior 
Unit tests can be helpful in identifying surprising behavior 
from legacy code.  For example, here are some tests we 
developed for a utility data value class that was being used 
both in simulation and to encode module parameter values: 

 
So far, it seemed to be a nice utility class that provided type 
conversion as a bonus.  But the test of the setStringValue 
method proved surprising (note: these are not the original 
expected values, but the values that were reported back 
from our first, failing, unit test as to what the API actually 
returned): 

 
The setStringValue method interpreted its argument string 
as a four-valued (01XZ) binary value.  This surprising 
behavior (especially since the API also provided a method 
called setBinaryValue that did almost the same thing) was 

dv1.setStringValue("10"); 
EXPECT_EQ(2,dv1.getDecimalValue());    
EXPECT_DOUBLE_EQ(2.0,dv1.getRealValue()); 
EXPECT_EQ("2'b10", dv1.getValueString()); 
 

drDataValue dv1; 
dv1.setDecimalValue(10); 
EXPECT_EQ(10,dv1.getDecimalValue());    
EXPECT_DOUBLE_EQ(10.0,dv1.getRealValue()); 
EXPECT_EQ("10", dv1.getValueString()); 
 
dv1.setRealValue(10.0); 
EXPECT_EQ(10, dv1.getDecimalValue()); 
EXPECT_DOUBLE_EQ(10.0, dv1.getRealValue()); 
EXPECT_EQ("10", dv1.getValueString()); 
 



not documented in the header file that defined the class.  
The behavior was described in a comment in the 
implementation code, but not every user of an API can be 
expected to read the full implementation. Such surprising 
behavior is a bug waiting to happen when the code is reused 
or extended.  This API has since been revised and 
documented in both the unit tests and the header file. 

7.3 Testing Complex Data Structures 
One reason that EDA unit tests can be challenging to write, 
at least initially, is that so much of our code is data-
structure driven.  Our use cases tend to involve various 
configurations of nets, ports, instances, and so on, all of 
which must be hooked up properly in the test setup because 
the code under test will be navigating those data structures 
directly.   Crucial differences in behavior may be dependent 
on the exact settings of various flags and attributes of 
different objects within a netlist.   Keeping tests readable as 
the setup gets longer and more complex is challenging. 

These issues have come up for us in writing unit tests for 
some code that interacts with a third-party HDL parser.  
One of the key questions has been whether to include the 
full parser in these unit tests, driving them from Verilog or 
VHDL sources, or instead to build the test cases up out of 
objects from the parser database API.  For the moment, we 
have taken the latter approach, which allows us greater 
control of the generated data structures, and removes 
possible dependencies on the parser version or options 
used.  There is a tradeoff here: testing against the actual 
parser would mean that all our test cases could arise from 
actual user input, but that we might not cover all possible 
data structure configurations.  Testing with constructed data 
structures means that we might construct cases that could 
not actually arise in practice, but allows us to help make our 
code more robust against any possible configuration. 

We have been able to make these tests more readable by 
developing some test helper functions that construct certain 
stereotyped patterns of objects relevant to groups of tests.  
This takes more time initially, but makes development of 
subsequent tests easier. 

8. Conclusions 
The principles of controllability and observability govern 
software as well as hardware testing. If we are going to 
catch faults with our tests, we need to be able to make the 
faulty behavior happen, and we need to notice when it does.  
Traditional testing methods used in EDA don’t do a very 
good job of providing controllability and observability of 
internal software components.  Unit testing, coupled with 
refactoring of existing code to make it more testable, offers 
far more control and observability of software component 
behavior.  At Blue Pearl Software, we are using unit testing 
to improve the quality of our software components and 
deliver better quality software to our customers. 
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