How Can We Build More Reliable EDA Software?
David E. Wallace

Scott Aron

Bloom

Blue Pearl Software
Santa Clara, CA
+1 (408) 961-0121

{dave,scott}@bluepearlsoftware.com

Abstract

Many EDA development groups rely on full tool testing as
the only means of determining program correctness.
Meanwhile, other software development communities have
made use of extensive unit tests as a method of assuring
high-quality components. We believe that the value of such
testing is derived from principles familiar to the EDA
community from hardware test generation: the need for
both controllability and observability of a unit under test to
verify correct behavior.

We believe that unit testing has value both for the
development of new code and for the understanding and
adoption of existing code, though it may require substantial
refactoring” to make older code testable.

We explore both the value and costs of unit testing for EDA
software, as well as noting some alternatives to stand-alone
unit testing that may provide some degree of observability
and controllability when full unit testing isimpractical. We
describe tools and resources we have used in putting
together a unit test infrastructure at Blue Pear| Software.

1. INTRODUCTION
The field of Electronic Design Automation has deyeld a
great understanding of how to build and test ma$giv

argue that such a testing regime would be sufficien
assure quality hardware performance in the fieldergthe
complexity of modern hardware designs. Neithethis
software equivalent sufficient to assure robusfqrerance
of the tools we provide.

A related question is: how can we understand araptad
existing EDA software once the original developkeve
moved on? Much EDA software is based on legacye cod
that was developed elsewhere, or is being mairdaine
persons other than the original developers. TheA ED
landscape is full of companies that are acquired,
development teams that have moved on, and uniyersit
software that is adapted to use in a commercial
environment. How well do we understand the sjtles
and limitations of inherited code? Even if it igensively
field-tested (and thus likely free of gross errpns)ll it
work properly when faced with new conditions andvne
designs? Can we determine how to extend and meddiy
code while keeping the core algorithms correctnost we
treat it as a black box that can be called andnasduto
yield correct results, but never touched?

While there are few if any reliable surveys of depenent
methods across EDA companies, the two of us have a
collective 51 years of experience with EDA develepinat

complex hardware designs to assure a high degree ofi 3 gifferent companies. We are confident that théofaims

reliability. Yet, like the proverbial shoemakerhildren
going barefoot, we EDA developers have often failed
apply this understanding to the design and devedoprof

our own software. All too often, we content olwves with

full system testing of our tools on a combinatidreample
designs with known results and customer designé wit
presumed good results. While this is often sudfitito
detect gross misbehavior, such as crashes, it litttesto
ensure that the underlying components are robust
performing optimally, or are adaptable to
requirements. This is the software equivalenstopping

any microprocessor that can execute a few sample

instruction sequences correctly and boot the ojegrat
system without causing a hardware panic. Few ofadd

" Refactoring is modifying code to improve its sture
without changing its behavior. [1]

new

we discuss are widespread throughout the EDA imgust
not the isolated pathologies of one or two indiadu
companies.

These ideas are not a panacea. There is no quédsy fix
that will guarantee an absence of bugs. We viésvab the
start of a multi-year effort to transform the coéttand the
software of an EDA company in order to get moréabdé

and maintainable software, and a more predictable
development cycle.

2. Background: Controllability and
Observability

What lessons can we draw from the hardware test
community? Two of the most significant advandest t
gave rise to modern ATPG were scan testing[2,3] thed
D-algorithm for combinational test pattern genenaji].
These two advances supported each other: the Dialgo

allowed the automatic generation of test pattenaswould
expose faults in a combinational network, whilerstasting
decoupled the sequential behavior of a system fitsm
combinational behavior, allowing these patterns bi®
applied to logic gates throughout a chip and thsulte
observed.

Two key concepts used here are controllability and
observability. In order to detect a presumed fanl@a unit

discarded once their code had been integratedttetoest
of the tool. There is, however an alternate dedinithat
has been used by two of the teams we have workdd wi
where unit test is used to refer to a small sydiesh case
that tests a single feature or scenario of thensoét tool.
In this paper, we use “unit test” to refer to tivstfusage;
the latter may be referred to as a small functitestl

3.1 Bug Example

under test (modeled as a stuck-at value on a IOgiCConsider the following line of C code:

connection), we need to be able to control thetspo as
to activate the faulty behavior (controllabilitgnd we need
to also to propagate the effects of the fault pmimt where
we can observe the difference between the goodrayst
behavior and the faulty system behavior (obseritgpil

Scan testing allows us to decompose complex haedwar
systems into smaller units that can be individutdited. It
allows us to move controllability and observabilfigints
from the system 1/Os to the state elements of #hs&gd,
allowing more faults to be tested, and simplifylmgth the
generation of tests and the interpretation of gsailts.

/* Round t up to next multiple of m */
t=1t+t%m;

Does it work? Is it reliable? Does it accomphghat the
comment suggests it should do?

This calculation appeared in nearly a dozen diffepdaces
in a commercial EDA tool one of us once worked oit
was attempting to calculate what internal clockieyeould
correspond to the next user clock edge, for a cisek that
occurred every m internal cycles. It had neveerbthe

These same principles apply to software as well assubject of a user bug report, and the tool passedye

hardware. If a software test is to expose faudthdvior in
a unit of code, we need to be able to control tipats of
the unit so as to activate the faulty behavior, wedceed to
be able to observe the consequences of that faulbhd
outputs. Just as with hardware, testing using tmdyfull

system inputs and outputs is usually not suffictentover
all the possible faults of subsystems, and cestaimhkes
certain tests harder to write, even if we can tegcally

express that test as a functional test. For thgirouest
coverage, we need to be able to access internahaimn
and control points in the software — what Michaebthers
refers to as “seams” [5, p. 31] in the code, wtiehve an
analogous function to scan registers in hardwastintp

These seams will be used to allow testing of irchliei
functions, methods, and classes in test harnesses.

3. The Case For Unit Testing

What is a unit test? Various sources [5 p. 12p64p7, 7,
8,9, 10 p. 499, 11 p. 8] agree that a unit testtisst of an
individual unit of software, generally a methodndtion or
procedure, but possibly an entire module or claksface.
It often involves a separate test harness, invghdrivers
and stubs, to test a single unit or group of uinitselative
isolation.

In his critique of Extreme Programming, Robert Glas
called unit testing possibly “the most agreed-upoftware
best practice of all time.”[12] However, this kimd unit
testing has not been routinely used in EDA in our
experience. Neither of us has ever worked in aA Edam
where such stand-alone unit tests were developet an
shared by any other team member. If any suchtgsias
done, it was kept private by individual developersd

regression test without complaint.

Yet a bit of hand simulation shows that this catioh is
incorrect. For t=7, m=3, the code rounds t up to@ 9.
For t=8, m=3, it rounds to 10. For t=17, m=4,atinds to
18 rather than 20.

The primary reason this bug had remained undetdotesb
long was that all but one of the regression testd, most of
the user experience to date, had been operatingooks
with a single primary user clock, where m=1 or Zhis
buggy calculation works whenever t is an integettipla
of m/2, which is always the case for these valden.oBut

the company was about to support more accurate Ismode

for multiple clocks, which would require larger uak of m.

This brings up one aspect of EDA development. we

frequently reuse code under new conditions thdtstiess
it in ways not previously experienced. Just beeatsde
was used without apparent errors in a previousoyepdnt
does not mean that it will continue to be relialeen the
requirements change.

To test a single line like that in the middle ofseveral
hundred line routine is challenging. Not only de have to
set up the conditions that will trigger the faulighavior,
we need to trace what conditions on other variabled
data structures will result in a change in the olmde
behavior on the outputs of the big routine. Bupmse
instead that we had refactored this particular utaton
into a separate, one-line function (correcting faalty
calculation in the process):

int RoundUpToMultiple(int num, int mod) {
return num%mod? num+mod-num%mod: num; }

Now we have observability and controllability paint
directly before and after the suspect code, andamecall it
directly from a test harness:

EXPECT_EQUAL(4, RoundUpToMultiple(4, 2));
EXPECT_EQUAL(6, RoundUpToMultiple(5, 2));
EXPECT_EQUAL(6, RoundUpToMultiple(4, 3));
EXPECT_EQUAL(6, RoundUpToMultiple(5, 3));
EXPECT_EQUAL(3, RoundUpToMultiple(3, 3));

By testing so close to the code, we can validaie th
functionality directly. This does not imply thatvezy
calculation should be its own function, but notattim this
case, doing so allows the different places perfognthis
calculation to reuse a single tested implementatistead

of copying their own. In general, coding for tdsliy will
involve writing more modular and shorter routinesd a
methods than code written without such considematio

3.2 Seams in the Code

Feathers [5] defines a seam as “a place where yowalter
behavior in your program without editing in thatge.”
Calling a function from a test harness rather {rauction
code as above might seem to qualify. His usageigin, is
mostly focused on creating seams that allow us adifn

either the arguments passed to a function/method or

routines called by the function/method in orderbi@ak
dependencies and allow the code to be tested ativel
isolation.

He defines three types of seams that can be ugget tode
under test: preprocessor seams, link seams, arekctobj
seams. Preprocessor seams make use of the pregopte
change the behavior, such as using a #define tmgligssh
between testing mode and system mode.
change behavior by linking different object libesiwith
the code under test — for example, linking withbstwr
mock objects for testing rather than the real tHiiog the
distinction between the two, see [13]). Objectnseaise
the inheritance hierarchy of an object-orientedglege
like C++ or Java to substitute test objects witboanmon
interface in place of real objects in a test hanes

One example of creating an object seam to breald bui
dependencies occurred in a early unit test we wab®lue
Pearl. We needed an instance of a Net object fsam
internal database, which required instantiating adMe.
(Faking out the Net object — or the Module — was
considered impractical, because of the amount of Ne
behavior the class under test required.) LinkiregModule
code required accessing a method called
getPrimitivePinName from a global instance of a big
DesignAttributes class, and trying to link thatssavould
have required linking in a lot of additional codeSo
instead, since this method was the only behaviat th

Link seam

Module needed from DesignAttributes, we created an
abstract class AbstractPinRenamer, that just stgpar
getPrimitivePinName method with the same interfas¢he
DesignAttributes one. Then we had both Designidtes
and a new test class inherit from AbstractPinRemaarel
changed the Module code to interact with an
AbstractPinRenamer rather than a DesignAttributBsw
the test code could interact with the smaller ¢ésds, while
the production code still used a DesignAttributéhis is

an example of the Abstractinterface pattern from
Feathers[5].

3.3 Reducing the Development/Test Cycle

One of the key reasons to adopt unit testing ispteed up
the development/test cycle to give near-instantaseo
feedback on code that we develop. The quickerameget
testing feedback, the easier it is to understaret fexnour
mistakes, and the less likely it is that our mistakill
inconvenience our fellow developers by getting &leelcin
to a shared repository trunk.

This cycle time has important qualitative effectshmw we
use test feedback. A test suite that involves ddtbong-
running user test cases that takes a day or amtthrough
will probably not be run before developers checlkcanle.
Even if they do, the odds are that someone eldenaike a
change that must be merged before checkin, sotlieat
code being tested will not be exactly the samehascbde
that is checked in. Moreover, debugging such exasnp
when they fail also takes a long time, so whentthek is
broken it may stay broken for a few days.

If we can reduce the run time to several minutesa simgle
machine (either by running a moderate number o€lqui
running small functional tests, or very few largests), we
can get a test suite that can be run before checkid at
Yhe conclusion of major blocks of work. This isbay
improvement over the overnight test suite, and ebs®s
the chances of checking in bad code. Most EDA
organizations have or develop such a suite. Buérsé
minutes is still a significant barrier to routinseuof tests
during development. It requires a significant imiption of
work to switch from developing code to running tests,
which discourages developers from running the testept
at natural breaks in their work flow. Also notattany test
suite that relies on running a full EDA tool wilave a
certain amount of startup time overhead for eashdase,
such as getting licenses and reading startup fildsch
limits the number of test cases that can be irduidl the
suite must run in a few minutes.

Finally, if we can reduce the run time of a testesto a few
seconds, rather than minutes, we get tests thatbean
routinely run as part of normal development adtivill his
is one goal of unit testing. If it only takes ufeas seconds
to verify that the interface behavior of a class ame
modifying hasn't changed (unintentionally), we cam

these tests repeatedly as we modify the implementatin
such a development loop, we would typically rurt jie
unit tests associated with the files or librariege are
modifying — we would run a larger suite before dtieg
This can facilitate development techniques suchT est-
Driven Development (TDD) [14]. We want individuahit
tests to run extremely quickly — milliseconds orerev
microseconds — so that we can run hundreds or &imolgsof
them in just a few seconds.

3.4 Documenting behavior

One of the key values of unit tests is that thegutieent (by
example) the usage of the routines they cover. ikenl
comments, unit tests that are regularly run wilkbewn to
reflect the current behavior of the code. If atirml has
unusual requirements or preconditions (such asinegqu
that thefoo routine must be called before callibgz on the
same object), that will generally be reflectedha setup for
the tests ofbaz, rather than waiting to be sprung on the
unsuspecting programmer who reuses what looks dike
perfectly useful routine in another context.

The full behavior of many EDA routines is not nesaadly
apparent from the call or short description alo@me EDA
tool that we worked on in a previous company haeeh
different static routines to determine if a primdicell was
combinational, all named isCombinational. All tare
agreed that an AND cell was classified as combbnati
and a DFF was not, but they disagreed on the @itzdgin
of other cells, such as LUTs and bus keepers. tdsiing
could make this difference explicit (and probabliggest
renaming two of these to names that were more
descriptive).

The use of unit testing is helpful for exploring thull range

of behavior for existing code, particularly if thagiginal
developers are no longer available to ask questitasit
the code. Often, we develop our understanding loditw
such code does by reading through it and perhagint
through it with a sample test case or two. Thighoa
quickly breaks down as the code becomes more cample
and it is easy to overlook corner-case behaviar ¢ha be
explored by appropriate unit tests.

Getting this code into a test harness may requaiegd
some relatively safe and conservative refactortogsreak
dependencies on other code, as described by Fsi&her
We note, however that few modifications are guaredht
not to change existing behavior of legacy code thay
contain latent bugs and inadvertent use of undefine
behavior. We have seen even such a trivial chayge
moving a global variable definition from one libyato
another produce a change in some system testgesult

3.5 The Pro-Active Search for Bugs
By more fully characterizing the behavior of oundtions
and methods, we can identify design flaws in ourent

implementation. As we identify the full range adgsible
outputs from a function for various inputs, we eah if the
users of these outputs can handle unusual valuderun
some input conditions that give rise to that valu€his
allows us to be more pro-active about identifyirgsgible
faults before a customer can encounter them.

Not every potential fault is worth worrying aboutFor
example, few of us try to write code that is absaiu
bulletproof against integer overflow or running oot
memory in the absence of evidence that these kely lio

be issues. But highlighting the potential intei@t is
useful for identifying failure modes for further
investigation.

4. The Case Against Unit Testing

Not everyone agrees with a primary focus on usitirg for
reliability. Brian Marick [11] argued for largeulsystem
testing rather than individual unit tests, arguthgt unit
testing was too expensive and too brittle to beasuesble.
We will examine these arguments in more detail Wwelut
we should also note that Marick was writing in 198&fore
the growing popularity of Extreme Programming brialug
renewed focus on the advantages of unit testing. siéuld
also note that many of our unit tests do in fank lin
production versions of various subsystems — thierdifice
is that Marick argued that such testing should beed
instead of separately validating the underlying components,
while we believe it should be doria addition to such
validation.

4.1 Cost/Time

While the benefits of unit testing can be signifigat is not
cost-free. Having good unit test coverage invohweising

a lot of non-customer facing code. Moreover, tosling
will generally be done by developers, rather thaA Q
engineers — it requires primary skill in developmen
languages such as C++ or Java rather than Veritog o
VHDL, and requires a focus on the internal codenitiet
(Although with the right skill mix, a QA engineerha can
work with the team to help refine their unit teftsm the
beginning can be invaluable.) As such, it isdmpetition
for resources with the activities of coding and wging
existing code.

The amount of effort required to develop good uedts
may be comparable to or even exceed the efforeteldp
the code being tested in the first place. Tablistd some
ratios of production code to test code for some-BD@

C++ projects that use gtest[15] as a unit testrengiln
terms of lines of code, production code and testecare
roughly comparable for many projects. It is trdwtt
developing unit tests for a given class may be Emand
more stereotyped than the details of the algoritfonghe

code, so extending the unit tests for a class spoge are
available may go faster than developing equivdiees of
functional code, but it is clear that the effortevelop unit

tests that completely cover a large project wielt be
large. On the other hand, it is possible to dgvélem a
few at a time.

Table I: Functional:Test lines of code for gtest pojects
Project Functional | Test LOC | Func:Test
LOC Ratio
Gmock 14273 15082 1:1.06
Gtest 28694 25192 1.13:1
AutoComp[16]| 80000 70000 1.14:1

We believe that the improved component quality twahes
from well-tested components
components will pay dividends that will free up
development time in the long run and improve thaliguof

the tool, leading to a better-planned and lessrrimpé-
driven development cycle. However, this is a vidaat
requires a long-term investment perspective. We\m
that a fair amount of unit-testing literature aridcdssion
oversells the ability to immediately recover thetsoof unit
testing within a very short timespan. This is netessarily
true for EDA code, and underscores the importarice o
management that is willing to take a longer-terewi

4.2 Code Stability

One of us once worked for a manager who objectezlito
early efforts to experiment with unit tests on tjeunds
that only customer-facing interfaces were likelybtostable
enough to be more or less guaranteed not to chdoge,
explicit reasons of backwards compatibility. |m&ir EDA
code interfaces, he thought, were too likely tongeato be
worth testing. Indeed, the (only semi-automated) tests
this author developed for a new algorithm thereldidome
obsolete when the algorithm needed to be movedkbeanl
the design flow, to operate on a different datacstre (a
precursor to the one it had originally operated dff)e unit
tests were tied to features of the old data stractoat did
not exist for the new structure, and could not lsilg
adapted.

This is one type of code stability issue with usits — the
risk that the code will change in a way that matkesunit
tests obsolete. Another risk is that excessivetgited tests
may make it difficult to make necessary changebeccode
while preserving the tests. Another example fram mast
experience: a test system that used lots of smadtional
tests to verify the behavior of a tool. There wevadreds
of tests verifying that the tool could detect abbspible
illegitimate combinations of command line flags and
options, each of which would cause the tool to quit a
usage string and stop. The problem was that ehtifese
was implemented with a comparison to a golden ilegfér
that test. This meant that any change — howeigaltr to
that usage string would break hundreds of testsh ed
which needed to be individually checked. A fivenate

code change could take hours to validate and upptdtien
files for each of the failing tests.

These problems are real, though addressablekes &ffort
to develop a truly robust set of tests that is hegittoo
brittle nor too constraining. The problem of bettests can
be addressed in part by coding strategies that ladze
and partition information so that no individual tteis

dependent on the details of many classes and data
structures. It helps to be working in an objedented

language, where behavior can be composed fromdayfer
individually testable classes. It helps to tesmarily the

class interfaces, rather than details of their @m@ntations.

and Dbetter-understood And some tests will indeed become obsolete as code

changes, as will some of the code itself. As atenaif
responsibility, it should be the developer’s resbility to
maintain and update appropriate unit tests foctue he or
she develops, and to retire tests that are no tonge
appropriate.

For minimizing rigidity, we should strive not to V& too
many tests test the same functionality repeatsdlyhat not
too many tests will have to change when the funetity
changes. It is fine to have lots of functionatsebat verify
that a usage string is produced when illegal ogtiane
invoked, but only one or two should test the actadlie of
that string. If the rest could use regular expoess or
filters to gloss over the actual contents of théngt the
suite would have been more robust to changes igeusi
general, unit tests that focus on specific behavidra class
under test are likely to be more focused on distinc
behaviors than functional tests, which of necessityst
include a fair amount of canned common behavior.

In addition, unit test fixtures written in an objexiented
language can benefit from inheritance to factorammmon
behavior that must be checked. Test fixtures astgare
C++ classes that can inherit from other test fixgur So if
there is common behavior that must be checkeddfeersl
different test fixtures, such checks can be coded parent
test fixture class that the different test fixtunelserit from,
making sure that there is only one place that néedse
fixed when this behavior changes.

4.3 The Altruist’s Dilemma

What we call the “Altruist’'s Dilemma” is rooted the costs
of developing unit tests. Many of the benefits wfit
testing cited in section 3 accrue to the entiremteaf
developers using unit tested code — the abilitymtore
quickly understand it, the ability to modify it \wibut
breaking interface behavior required by the oribina
developer, and the higher productivity resultingnirbeing
able to reuse this code without having to spendhnime
debugging it. Moreover, these benefits are distatl over
time. On the other hand, the costs of developimgnit
tests are paid up front, and are paid by the aalgin
developer. Particularly if there is not alreadgaod unit

testing infrastructure in place, there may be aersible
overhead in getting things set up before any btnaefiall
can be realized.

This asymmetry poses a considerable barrier totadofor
the first developer to try to use unit testing ompraject.
This developer will be paying all the costs initialbut
realizing only a fraction of the benefit. As aukswithout
strong management support, this developer risksgbsen
as less productive, with the associated career rikkis
much better if a team can adopt or experiment with
testing together, where they can realize benafin feach
other’s unit tests and share the risks. But imlture such
as EDA development, where there is no traditioruot
testing, it may be difficult to persuade othersgtmw along
with such a change in development style.

5. Alternatives to Unit Testing

While persistent unit tests that are shared bywhele
development team are the “gold standard” of tektgbi
many EDA developers may find themselves
environments where it is not practical to develaphstests
for code they are working on. Perhaps managengent i
deeply skeptical of the value of unit testing, aliqy is
such that all persistent tests need to be run sigaifull tool
executable. Or perhaps you have a unit test inéretsire,
but there isn't time to develop persistent test tover the
particular code you are working on. What can the
conscientious developer who wants to develop rigliabde

do in such an environment? Here are some suggesgtiat
one or both of us have used at various times ircatgers.

in

5.1 One-off testing (in debugger, or ad-hoc

use)

Debuggers are not just static tools that allow ypoabserve
the behavior of running code without affecting iMost
debuggers have the ability to set variables and cal
functions while in the debugger, though those tiedimay

be somewhat limited (e.g., the MS Visual Studio C++
debugger does not allow you to call templated fonst
directly from a watch window — but you can calltarglard
function that invokes a template call). This akothe
debugger to be used for one-off testing — if yomita see
what a function does when the second argument,iseitCa
breakpoint just before a call to that function, r the
variable value, and observe the results. Dynafgitgbed
languanges are particularly useful to test in audgber,
since you can construct arbitrary arguments andrebghe
results. Statically-typed languages don’t usuallgw you

to create new variables on the fly, but it can sinmes be
useful to have some global pointers of appropsatel
selected types coded into a program just for deibggg

Likewise, it can sometimes be useful to write arstimow-
away program that exercises a particular functevgn in
the absence of a larger unit test environment.

Such testing is not as useful to the rest of themtas
persistent unit tests can be in documenting anidlyireg the
code against future changes — but at any rate gothave
some assurance that the code has been tried tbiesson
a particular corner case.

5.2 Log inputs and outputs; look at usage
What happens when you want to know what a fundioes
in various corner cases, but aren’t able to or doave the
time to write individual unit tests? In that pasit, we once
inserted temporary logging code at the start ardl aha
function, writing the input and output values tdog file.
Then we ran a full system test suite, and dredfealigh
the logs to see if the cases we were interestédppened
to occur naturally. We've used a similar approaxiind
which test cases in a large suite exercise paatiduhctions
in an existing code base.

5.3 Export function interface to tool

command line

If your test organization and infrastructure orllpwas tests
to be performed on the full tool, one way to comwenit
tests into system tests is to export the inputsanguts of
internal functions into (undocumented) command line
functionality, such as exporting it into a Tcl ftieo that
can be called from a tool command line. Then thie test
can be written against such “system” behavior. Oaeto
be careful with this approach, as it can exposeatiehand
information about the internal workings of the tdolend
users — but at least it allows the code to bedeste

5.4 Beyond Unit Testing

A fair number of bugs can be caught today by static
checkers such as Coverity® Static Analysis[17] am@e
Software’s PC-lint[18]. Dynamic checking usingrgyolic
execution in KLEE[19] has shown promise in findimggs

in C code and covering execution paths not foundanual
tests. Perhaps someday this approach may be oiséuef
automated generation of unit test cases, much d&CGAIB
used today to generate hardware test patterns.

6. Coding for Testability Guidelines
Here are some rough guidelines for writing mordatele
code:

1) Keep it short. Massively long routines are hard to
test thoroughly. A block of lines that implemeats
single concept should usually be extracted into its

own routine, which creates a seam for
observability and controllability.

2) Make it easy to instantiate stuff. If you can
construct an object without a lot of preliminaries,
it makes it easier to construct one to support
another test.

3) Beware mega classes. A class with dozens of

methods and responsibilities is hard to test. A

class that is composed of simpler (and separatelyGiven our current level of coverage, most of theeca
testable) interfaces is much easier. studies we can offer are either examples where ave h
used unit tests to explore surprising behavior xitig
code, or where unit tests could have saved timebaokien
builds had they been in place.

4) Keep files focused. A single file that definesslot
of classes is hard to test, and likely to leadrik |
dependencies. A file should generally define a

single class, or a small set of related classes. 7.1 Platform Conversion
5) Modularity is your friend. Testable code tends to One area where even minimal unit tests were usefuis
be more focused and modular. was when adding support for a 64-bit build on a new

6) Write tests along with the code. Even if you dont Version of one of our platforms. The unit tesisgfed

adopt full-out Test Driven Development (and the SOme minor d_lﬁerences between the 32 and 64 bidsu
during the build process. Unfortunately, we did get
have unit tests covering another area of the catltere a
sentinel value of (size_t) -1 was being used tg faleted
objects that had not yet been removed. Some detecy
routines manipulating those objects passed an nedigt
as the type instead, which failed to match on abi64-
platform. Having unit tests covering basic ingertiand
deletion of objects from the enclosing data stmgctuould
7. Blue Pearl Experience have saved us a couple of days of broken builddewhi

trying to debug some rather bizarre behavior rggufrom

an inconsistent data structure.

complexity of EDA algorithms can make this
difficult), writing tests in parallel with writingode
can make it easier to test.

7) Write readable tests. The easier it is to look at
test and see what it is doing, the easier it is to
understand what the code is expected to do, and
whether the test covers what we think it does.

At Blue Pearl Software, we have been refactoring an
developing unit tests for a large (635K lines of+C+ot
counting external libraries) EDA tool over the pasveral 7.2 ldentifying Surprising Behavior

months. This is the start of a multi-year profecimprove it tests can be helpful in identifying surprisinghavior
th_e qua_lllty of our software and cover much of ceftvgare from legacy code. For example, here are some tests
with unit tests. developed for a utility data value class that weisdp used
Our primary build tool is Cmake [20]. We use thmeo- both in simulation and to encode module parametkres:
source Google Test (gtest) and Google Mock (gmock)

[15,21] to define the unit tests and build one @renunit drDataValue dv1;

test executables per library, and Ctest[20] adrémaework dvl.setDecimalValue(10);

to run the test executables. Gtest and gmock owitfe EXPECT_EQ(10,dv1.getDecimalValue());

Cmake configuration files, and were easily integiainto EXPECT_DOUBLE_EQ(10.0,dv1.getRealValue());

our source tree as external imports. For additiona | EXPECT_EQ("10", dvl.getValueString());

refactoring support, we use Visual Assist X[22].
The full set of unit tests developed to date i I dvl.setRealValue(10.0);
€ Tull set ol unit tests developed 1o date IS ama EXPECT_EQ(10, dv1.getDecimalValue());

platforms fto.lq“ha"fg o db!J”d for QdA Systehm gzti”gf the EXPECT_DOUBLE_EQ(10.0, dv1.getRealValue());
unit tests fail, the build is rejected and the @A4t$ are not “EAm1 A" A : .

run. Individual developers can run the full seuaft tests EXPECT_EQ("10", dv1.getvaluestring());
or just the tests associated with a particulaaliypor suite. So far, it seemed to be a nice utility class thavided type
For the moment, developing unit tests has beengpilyra conversion as a bonus. But the test of the satfMdlue
background task as we experiment with how to bring method proved surprising (note: these are not tiginal
significant sections of code under test and exphane unit expected values, but the values that were repdresk
tests fit with various projects. As of this wriginwe have from our first, failing, unit test as to what thé>Aactually
written around 5000 lines of unit tests. If wewase that returned):

we will eventually need around a 1:1 ratio of testle to
product code, we stand at around 0.8% of our gea the
next few years. Our overall quality strategy rermanulti-
pronged, with system-level tests still carrying thajority
of the quality burden. But we have found that lenel
tests offer much more detailed testing of the cadeich
will be important as we move forward and bring &rg
sections of the code under test.

dvl.setStringValue("10");
EXPECT_EQ(2,dvl.getDecimalValue());
EXPECT_DOUBLE_EQ(2.0,dv1.getRealValue());
EXPECT_EQ("2'b10", dvl.getValueString());

The setStringValue method interpreted its argunsénig
as a four-valued (01XZ) binary value. This surpds
behavior (especially since the API also providesethod
called setBinaryValue that did almost the sameghimas

not documented in the header file that defined dlass.

9. REFERENCES

The behavior was described in a comment in the[1] M. Fowler et alRefactoring: Improving the Design of

implementation code, but not every user of an A&t be
expected to read the full implementation. Such rsirgy

behavior is a bug waiting to happen when the cedelised
or extended.
documented in both the unit tests and the healaer fi

7.3 Testing Complex Data Structures

One reason that EDA unit tests can be challengingrite,

at least initially, is that so much of our code data-
structure driven. Our use cases tend to involveousa

configurations of nets, ports, instances, and soatinof

which must be hooked up properly in the test sbegause
the code under test will be navigating those datacwires
directly. Crucial differences in behavior maydependent
on the exact settings of various flags and attebudf
different objects within a netlist.
the setup gets longer and more complex is chahgngi

These issues have come up for us in writing usitstéor
some code that interacts with a third-party HDL sgar
One of the key questions has been whether to iacthd
full parser in these unit tests, driving them frdferilog or
VHDL sources, or instead to build the test casesutpof
objects from the parser database API. For the mgme

have taken the latter approach, which allows ustgre
control of the generated data structures, and resov
possible dependencies on the parser version oorgpti

used. There is a tradeoff here: testing agairestatttual
parser would mean that all our test cases couksk drom

actual user input, but that we might not coverpalssible
data structure configurations. Testing with candtd data
structures means that we might construct casescthdd

not actually arise in practice, but allows us ttphmake our
code more robust against any possible configuration

We have been able to make these tests more reaoiable

developing some test helper functions that constretain
stereotyped patterns of objects relevant to grafpests.
This takes more time initially, but makes developmef
subsequent tests easier.

8. Conclusions

The principles of controllability and observabiligovern
software as well as hardware testing. If we arengdb
catch faults with our tests, we need to be ablmase the
faulty behavior happen, and we need to notice viheéoes.
Traditional testing methods used in EDA don't deeay
good job of providing controllability and observidyi of
internal software components. Unit testing, codplgth
refactoring of existing code to make it more teltabffers
far more control and observability of software cament
behavior. At Blue Pearl Software, we are using testing

to improve the quality of our software componentsl a

deliver better quality software to our customers.

This APl has since been revised and

Keeping testadable as

Existing Code, Addison-Wesley, 1999.

[2] E. B. Eichelberger and T. W. Williams, “A Logic Dgs
Structure for LSI Testability,Proceedings of the 1977
Design Automation Conference. Reprinted ir25 Years of
Design Automation, pp. 358-364.

[3] M. J.Y. williams and J. B. Angell, “Enhancing Taistlity
of Large Scale Integrated Circuits vis Test Poamd
Additional Logic,” |[EEE Trans. Computers, C-22 (1973),
pp. 46-60.

[4] J.P. Roth, “Diagnosis of Automata Failures: A Calstand
a Method,”IBM Journal of Research and Devel opment, Vol.
10, No. 4, July 1966, pp 278-291.

[5] M. C. Feathersworking Effectively With Legacy Code,
Prentice Hall PTR, Upper Saddle River, NJ, 2005.

[6] R. OsheroveThe Art of Unit Testing with Examplesin .Net,
Manning Publications, Greenwich, CT, 2009.

[7] http://en.wikipedia.org/wiki/Unit_testingetrieved 3/4/2012.

[8] http://softwaretestingfundamentals.com/unit-testing
retrieved 3/4/2012

[9] http://c2.com/cgi/wiki?StandardDefinitionOfUnitTest
retrieved 3/4/2012

[10] S. McConnellCode Complete, Second Edition, Microsoft
Press, Redmond Washington, 2004.

[11]B. Marick, The Craft of Software Testing: Subsystem
Testing, Including Object-Based and Object-Oriented
Testing, Prentice Hall PTR, Englewood Cliffs, NJ, 1995.

[12]R.L. Glass, “Extreme Programming: The Good, the, Badl
the Bottom Line,"1EEE Software, November/December
2001, pp 111-112.

[13] M. Fowler, “Mocks Aren't Stubs,”
http://martinfowler.com/articles/mocksArentStubmht
January 2007, retrieved 3/6/2012.

[14] K. Beck, Test-Driven Development: by Example, Addison-
Wesley, 2003.

[15] http://code.google.com/p/googletest

[16]J. Oravec, personal communication.
[17] http://www.coverity.com

[18] http://www.gimpel.com

[19]C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisand
Automatic Generation of High-Coverage Tests for @lax
Systems Programs,” USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2008),
December 2008.

[20] http://www.cmake.org

[21] http://code.google.com/p/googlemock

[22] http://www.wholetomato.com

